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Behaviour of non-coaxial 
loops in ordered alloys 

dislocation 
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A detailed numerical analysis of the behaviour of non-coaxial superlattice dislocation 
loops lying on parallel slip planes has been made by approximating the loops in terms of 
piecewise segments. There are several competitive processes that could occur between the 
loops. These include, complete passing of the loops over one another, partial passing of 
the loops that leads to uncoupling of the loops and thus to disorder in the crystal, elong- 
ation of the loops that leads to the formation of long screw dipoles, and finally cross-slip 
of the loops that leads to mutual annihilation of unlike screw segments by any of four 
alternate modes of cross-slip involving one or both dislocation loops. Among these several 
paths, the one that has the lowest energy is determined for various loop sizes and their 
spacings. The results show that, depending upon the interplanar separation, Z, the loops 
either pass one another, or else elongate preferentially along their screw orientation until 
sufficient internal stresses are developed to cause them to cross-slip. However, no 
uncoupling of the dislocation loops is observed. 

1. Introduction 
One of the significant effects of atomic ordering in 
alloys is the change in their dislocation mor- 
phology. Hitherto perfect dislocations in disor- 
dered alloys become imperfect upon ordering and 
become attached to a plane of  antiphase boundary 
(APB). The existence of  superlattice dislocation, 
which is simply a pair of these imperfect dislo- 
cations coupled by a finite width of APB, there- 
fore becomes a necessity in ordered alloys in 
order to minimize this APB energy. Because of  
these changes in the dislocation morphology, 
atomic ordering has a profound effect on the 
mechanical properties of  alloys(see [1] for a 
review). In particular, even the single crystalline 
ordered alloys [2-5]  that are oriented for single 
slip show significant work-hardening with the 
work-hardening rates approaching nearly one tenth 
of the shear modulus. Associated with these high 
work-hardening rates is the generation of slip- 
induced disorder which occurs to the extent that 
at large strains corresponding to stage III defor- 
mation the stress-strain curves of  these ordered 

alloys become similar to those of their corres- 
ponding disordered alloys. This essentially implies 
that superlattice dislocations at these large strains 
become uncoupled and hence behave similar to 
dislocations in disordered alloys. It is therefore 
imperative to incorporate a mechanism for the 
generation of disorder in any work-hardening 
model for ordered alloys. 

Various dislocation models have been proposed 
to account for this slip-induced disorder which 
include the APB tube model [5-8]  as well as the 
dipole model [9] involving the elastic interaction 
of passing supeflattice dislocations on parallel 
slip planes, that is the Taylor model [10]. APB 
tube generation requires intersecting slip systems 
[5] and, therefore, does not account for the high 
work-hardening rates observed in single crystalline 
ordered alloys oriented for single slip. The dipole 
model, on the other hand, is most likely to be 
applicable for single slip orientations and is based 
on many experimental observations which show 
the presence of  abundant numbers of dislocation 
dipoles [2 -4 ] .  The uncoupling of superlattice 
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dislocations by this model, however, does not 
occur until the separation between the passing 
dislocations is below some critical value [9]. But 
recent calculations [11] indicate that such small 
separations between the passing dislocations may 
not be reached, especially if the dislocations are of  
pure screw type, since these dislocations could 
easily cross-slip under their own internal stresses 
and mutually annihilate one another. The above 
mentioned calculations, however, have been based 
on the infinite dislocation line approximation, 
whereas the dislocations in real crystal generally 
consist of  irregularly shaped loops of finite dimen- 
sions. In order to understand the behaviour of 
these loops, a detailed analysis of the cross-slip 
behaviour of  non-coaxial dislocation loops on 
parallel slip planes facing their screw segments 
has been made recently [12]. An understanding of 
the behaviour of these non-coaxial dislocation 
loops is important since they approximate the 
situation wherein the dislocation loops are nu- 
cleated at various points inside the crystal and 
expand until they meet one another. Among other 
things, the above analysis showed that it is possible 
to obtain much smaller separation between passing 
dislocation loops without them undergoing cross- 
slip and mutual annihilation since cross-slip of 
these dislocation loops is considerably more 
difficult because of their line tension. This dif- 
ficulty is even more pronounced when the loop 
size is small. 

In the above calculations [12], it was not 
possible to determine whether or not such small 
separations between the dislocation loops are 
sufficient to uncouple the loops during their 
passing. This is because the above analysis con- 
sidered only one or two dislocation loops which 
do not pass one another in an otherwise perfect 
crystal. The result was that the segments of the 
loops that face each other form dipoles while the 
remainder of the segments expand into the crystal. 
In order to force the dislocation loops to pass one 
another, it is necessary, then, to consider the 
presence of  other dislocation loops in the neigh- 
bourhood which restrict the unlimited free ex- 
pansion of the dislocation loops under consider- 
ation. The presence of  these neighbouring loops 
can be taken into consideration by viewing them 
as forming an infinite array of non-coaxial dislo- 
cations loops, all lying on parallel slip planes. 
Among the various possible arrays, we shall 
consider, for simplicity, a two-dimensional array 
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wherein the axis of the loops lie on the same 
plane. This array is similar to that considered 
earlier [13], where it was shown that the most 
important effect of  the presence of the other 
loops in the neighbourhood is to constrain each 
loop to be symmetric, i.e. the opposite segments 
of each loop are separated symmetrically from the 
centre of the loop. In addition to passing, the 
specific choice of the constraints also allows the 
loops to expand preferentially along screw orien- 
tations, thereby generating elongated loops in 
agreement with many experimental observations 
[2 -4] .  In the following sections, we shall examine 
the passing as well as the cross-slip behaviour of 
these constrained dislocation loops and determine 
the conditions under which the loops could be 
uncoupled to generate disorder in the crystal. 

2. Constrained dislocation loops 
Fig. 1 a shows the piecewise approximation of two 
non-coaxial dislocation loops on parallel slip 
planes which expand towards one another along 
their screw segments. The two loops considered 
are assumed to be part of an infinite array of such 
loops discussed above. While considering only two 
loops of  the array, it is assumed again that the 
remainder of the loops have no significant effect 
on the equilibrium shapes of the two loops, other 
than imposing the specific constraints discussed 
above. That the above assumption is justified has 
already been shown earlier [13]. 

The equilibrium configuration of  the two 
loops in Fig. la is given by a complex saddle point 
type of position on a multi-dimensional energy 
surface determined by variables R1, R2, R3 and 
R4. In addition to these variables, the total energy 
of the loops also depends on Y, Z and r, where Y 
is the separation between the axes of the loops, Z 
is the vertical separation between the slip planes 
containing the loops and T is the applied stress 
necessary to keep the loops in equilibrium. In 
order to facilitate easy comparison of the equili- 
brium configuration of the loops with those of 
infinite dislocations, the projection of the opposite 
screw segments that form dipoles is also shown on 
the right-hand side of Fig. l a, where Xo and X1 
define the relative positions of these segments and 
are given by 

R4-- Y 
x o  - - -  ( 1 )  

2 
Rz --R4 

X, - , (2) 
2 



where Xo is defined as positive when segment 12 
is to the left of  segment 6 (Fig. 1 a) and as negative 
otherwise. The total energy of  the two loops is 
given by 

E T = E~ + E~ I + E I I I +  ES TM + EI I-II + E~ - m  

q- EI I-IV q- E l  I-III q- E l  I-IV 

q- E III-IV + E T q- L~ 7 (3) 

where superscripts I, II etc. refer to dislocation 
loops I, II, etc. and subscripts S and I refer to self 
energy of a loop and interaction energy between 
two loops, respectively. The individual energy 
terms on the right-hand side of Equation 3 can be 
expanded in terms of the piecewise segments in 
Fig. la. Since these expressions are somewhat 
lengthy, such an expansion is given below for the 
simple configuration of  Fig. l a. Based on these, 
one can easily deduce the expressions for other 
loop configurations that are discussed in this 
paper. The above energy terms are given by 

E 1 = E I I I =  2E~ + 2E~ + E 1-3 + E~-4 (4) 

E~ I -=- E ~  V : 2E~ + 2E~ + EI s-7 + E~ -8 (5) 

E I-II = EI III-IV = 2(EI 1-5 q- EI 1-7 -~ E 2-6 

+ E{ -8) (6) 

EI I-III = 2(EI/-9 + E?  -11 q- E?  -10) 

+ E~ -~2 + E4-~o (7) 

LTI I-IV = E I I - I I I  = 2(E  - '3 + E 1 - ' s  + E l  2- '4) 

n t- 2-16 (8) 

E l  I-IV = 2(EI s-13 q- s  5-1s q- E~ -14) 

+ E 6-16 + E~ -'4 (9) 

where the self energy of segment i is denoted by 
Es / while the interaction energy between segments 
i and f is denoted by E~ q. These energies are deter- 
mined using the expressions developed by Jossang 
and his co-workers [14-16] .  The last two terms 
in Equation 3 are the work done by the applied 
stress and the work expended in creating 3', the 
APB energy, respectively and these in turn are 
given by 

& = --2rb(R,R~ + Rd~4) (10) 

and 

G := 2"[( R 1 g 2 - R 3 R 4 ) "  (11) 

The configuration of the dislocation loops after 
complete passing is shown in Fig. lb. Since all 
of the segments in the piecewise approximation 
remain the same as in Fig. 1 a, the total energy of 
the loops is the same as that given by Equations 
3 to 11. The projection of  the screw segments on 
the right-hand side of Fig. lb shows that complete 
passing of the loops is characterized by an increase 
of Xo without a corresponding increase in X1. 
As will be shown later, when the loops pass one 
another, the relative contribution from the inter- 
action energy between the two loops to the total 
energy decreases to the extent that the loops 
behave as independent of one another, i.e. as single 
superlattice dislocation loops. 

Fig. lc, on the other hand, shows the con- 
figuration of the loops after partial passing of the 

loops wherein only the outer loops pass one 
another leaving the inner loops locked as a dipole. 
The position of the screw segments shown on the 
right hand side indicates that this configuration 
corresponds to the uncoupling of the superlattice 
dislocations discussed earlier [9]. In comparison 
to complete passing, the uncoupling of the loops 
is characterized by the simultaneous increase of 
Xo and X1 as shown in Fig. 1 c. 

There is a third alternate path that the dis- 
location loops can take and this is shown in 
Fig. ld. In this case the applied stress is smaller 
than that required for passing, but is sufficient to 
expand the loops at least along one direction. 
Since the dislocation loops are constrained not to 
expand along R2 direction except by way of 
"passing", they expand only along R1 direction. 
Such an expansion gives rise to elongated loops 
with long screw dipoles, a common feature ob- 
served in single crystalline ordered alloys [2 -4 ] .  
This particular expansion of the loops is charac- 
terized by the increase of Rx and R 3 without a 
corresponding increase in R2 and R4 (Fig. la) and 
furthermore such an expansion has no counter- 
part in terms of infinite dislocation behaviour. 

3. Cross-slip configurations 
If the internal stresses due to each loop are of 
sufficient magnitude the dislocation loops instead 
could cross-slip towards one another and mutually 
annihilate their unlike screw segments. Thus 
cross-slip of  the loops provides an alternate path to 
passing, uncoupling or elongation. There are, how- 
ever, four alternate modes by which cross-slip of  
the loops could be accomplished and these are 
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Figure 1 (a) Two constrained non-coaxial passing superlattice dislocation loops on parallel slip planes meeting one 
another along their screw segments. (b) The loops passing one another. (c) Outer dislocation loops pass one another 
leaving the inner loops remain locked as a dipole thereby causing partial uncoupling of the superlattice dislocation 
loops. (d) Elongation of the dislocation loops along screw direction thereby generating long screw dipoles. 

shown in Fig. 2. Fig. 2a and b show somewhat 
symmetric cross-slip wherein both  loops simul- 
taneously cross-slip towards one another. In 
particular, Fig. 2a shows the two outer loops 
symmetrically cross-slipping on a plane joining 
them, which makes an angle a with the primary 
plane. The total energy of  the loops is given by 
Equation 3 wherein the work done by the applied 
stress and by  the APB tension is given by 

E T 
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= --2"rb(RlR2 + R3R4) + 2~'b c o s a R l d  

(12) 
= 27(RIR2 - -R3R4)  + 27(RIR2--R:f l~4)  

+ 2 7 R i d  (13) 

where it is assumed, for simplicity, that the APB 
energy, 7, is the same on both the primary and 
cross-slip planes. Also, in all the figures that 
follow, the extent o f  cross-slip of  a given loop is 
denoted by d. 

The second mode of  symmetric cross-slip is 
shown in Fig. 2b, wherein the two inner loops 
cross-slip simultaneously towards one another. 
The work done by  the applied stress and the APB 
tension, however, are given by 

E r = --2rb(R1R2 + R 3 R 4 )  - -2 Ib  c o s a R 3 d  

(14) 

E 7 = 23 ' (R~R2--R3R4)  + 23'R3d. (15) 
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Figure 1 continued. 

For infinite dislocations, the configurations in 
Fig. 2a and b reduce to one since there is no 
distinction between outer and inner dislocations. 

Among asymmetric modes, Fig. 2c shows the 
cross-slip of  only one inner dislocation loop 
towards the outer loop of  the other supeflattice 
dislocation loop. The work done by the applied 
stress and the APB tension for this case are given 
by 

E r = - - 2 T b ( R I R 2  +R3R4) + 7-b c o s a R a d  

(16) 

E , y  = 2 " ) ' ( R 1 i  2 - - R 3 R 4 )  q- "~R3b. (17) 

Finally, the second asymmetric cross-slip mode 
is represented by Fig. 2d wherein only one outer 
loop cross slips towards the inner loop of other 
superlattice dislocation loop. The work done by 
the applied stress and by the APB tension for this 
case is given by 

E r = - - 2 r b ( R 1 R 2  + R 3 R 4 ) +  TO c o s a R l d  

(18) 

E~ = 2")'(RIR2 --R3R4) q- ")'Rid. (19) 

Except for the fact that there are two symmetric 
cross-slip modes, the configurations in Fig. 2 are 

2251 



LOOP I ~ I- x , - ~  

~///o ~ \ \  ~,,,,,,,,,,,,,,,,~ -I- 

\ z r162 i~ &~.,a 

L- \ X / ~ 2 ; / ' 5 . , 2  ~--Xo Y-i ~o - -  ' 

57 
1 \ I l l  I 

LOOP TIT / ,2 ,  \ \  - ~ / _ / D  

LOOP" 'l'V - \  ~ / "  
(Q) 

LOOP I / / k  

i , " \  \ 
\ z ~ ' ; . . . . . / - ' \  \\ 
\ ~ ~ . . 7 , , . - '  ,5 .),. ",," 

,4>~. ........ , \ 

\ \ \  17. -  / i 
. ~ " ~  "W'\ 18 i / "  11 
uuur ax~ /\ \ i i i  

/ 13 \ . \  l /  i / 1 2  / - \ ~, . f  I 
LOOP "iV \%.II / 

(b) 

~-Xo+~ 
2 

/<C/ ~ / / / / / / / / / / |  

\\  d 
@/]]/[I//ll/[/][/l\ 

14 

Figure 2 Cross-slip of non-coaxial dislocation loops (a) symmetric cross-slip involving outer dislocation loops, (b) sym- 
metric cross-slip involving inner dislocation loops. (c) Asymmetric cross-slip involving only one inner dislocation loop. 
(d) Asymmetric cross-slip involving only one outer dislocation loop. Dotted planes represent the cross slip planes. 

similar to those considered with reference to in- 
finite superlattice dislocations [ 11]. 

For any given cross-slip mode, the total energy 
of the cross-slipping dislocation loops varies with 
the cross-slip distance as shown schematically in 
Fig. 3. In particular, for Z less than Za, cross-slip 
occurs spontaneously and correspondingly the 
total energy decreases continuously with the 
distance. However, at slightly larger values of Z, 
the energy-distance curves show a small minimum 
before they pass through a maximum. The mini- 
mum generally occurs when d is of  the order of 1 
to 5 A. At still slightly larger values of Z the 
energy increases continuously with distance with- 

out going through any observable minimum. 
These energy-distance curves are similar to those 
determined earlier for unconstrained non-coaxial 
dislocation loops. In order to check whether the 
loops of  a given configuration cross-slip spon- 
taneously or not, cross-slip energies have to be 
determined for each one of the four cross-slip 
modes. To minimize the computational time 
involved, the following procedure, however, is 
adopted. Instead of determining the complete 
energy-distance curves, the cross-slip energies for 
each mode are determined at three values of d, 
each of 4A separation. Spontaneous cross-slip 
by the given mode is allowed to occur if cross- 
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Figure 2 continued. 

slip energies for the three successive values of  d 
decrease continuously. It is necessary to select at 
least three values to make sure that the cross- 
slip energy decreases continuously rather than 
shows a minimum. This procedure is somewhat 
similar to the more simplified procedure adopted 
for infinite dislocations [11], wherein the above 
complexities such as a minimum followed by a 
maximum do not exist. 

4. Results 
The typical behaviour of  non-coaxial dislocation 
loops is shown in Fig. 4 and it is compared with 
that of  single loops in ordered alloys. The solid 

curves in this figure represent the equilibrium 
configurations of  single superlattice dislocation 
loops as well as single outer dislocation loops 
enclosing APB. For simplicity, the variation of  
only R1 with the stress is presented in Fig. 4. 
Because of  computational difficulties in deter- 
mining the equilibrium configurations of  the 
single superlattice dislocation loops at high stresses, 
its curves is simply extrapolated to meet the curve 
of the outer loop and such an extrapulation seems 
justified on the basis of  the previous results 
obtained on circular dislocation loops [17]. In 
keeping with previous studies, the present calcu- 
lations have been performed using the material 
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Figure 3 A schematic illustration showing the variation 
of the energy of cross slipping dislocation loops as a 
function of the cross-slip distance for any one of the 
cross-slip modes discussed in Fig. 2. 

constants corresponding to a fully ordered FeCo 
alloy [1],  In particular # = 7 x  101adyncm -2, 
b = 2 . 4 7  x 10-Scm, v = 1/3, and 7(110) ---- 157 erg 
cm -2 have been used. 

The bahaviour of  non-coaxial dislocation loops 
is shown by dash-dot curves in Fig. 4. Since the 
loop behaviour is most pronounced when the loop 
size is small, attention is focused on the behaviour 
of the smallest size superlattice dislocation loops 
that could be obtained. Fig. 4, in particular, 
illustrates the behaviour of loops with y = 300 x 
10-8cm. The loops essentially behave as single 
superlattice dislocation loops until they meet one 
another. The behaviour of the loops after their 
screw segments meet one another depends on Z. 
For example, for Z =  50 x 10-acre; the results 
show that R1 increases with a decrease in stress 
at much faster rate than that of single loops. 
This implies that the loops are becoming much 
more elliptical than that of  single loops, that is the 
loops elongate preferentially along their screw 
orientation and the configuration corresponds to 
that shown in Fig. ld. Because of the small value 
of Z, the applied stress apparently is not high 
enough for the loops to pass one another breaking 
their dipole configuration. Also, because of the 
small value of Z, the total energy per unit length 
of the dipole is small, and the loops could pre- 
ferentially elongate along the R1 direction. Since 

t 
E 
o 

? 
0 
v 

E 

15001 I 1 ~ I I I " I 

t \ 
FeC0 

Y = $OOx I0 -8 cm \ Y----~57 erg 

1 2 5 0  / Z =  80x  IO -8 Cl-n 

/ | 500Z I0 -8 cm X 
/ \ Z:65x,08cm 

"~-..... '\. ~ 

"'\. Xk ,JY = 270 x I0 -8 cm X 
\ \  \ \  ~ Z 50 x I0 8cm X ' .\'.(9< = -8 cm X tOUTER DISLOCATION LOOP _ 

I O 0 0 -  X "\. ' \X'x X ~ / ~  

\ . ' .  " . ~ . b , ~ Y = B O O x  10 -8 cm X 
"X.k X. Z = 50 x 10 -8 cm X ' ,  . . . . .  \ 

\ ' \  
% .  -,'\ Y= 300xlO -8 crn 

" ~ " - . . ~  Z = I00 x 10-8 cm 

500 "" " \  

~ ~ < " .  ( = 3 0 0 x l O - S c m  
DISLOCATION LOOP " " ' ~ \ , ' . ' \ .  / . . . . . .  -8 ~ " '~\, ' . ' \ .  "5"kJ A l',J -- ~ l l l  ~ / / , , ~ , / / /  

[ I I I ' I "~ 
50 60 70 80 90 I00 I i 0 120 

[" (108 dyn cm - 2 )  

Figure 4 Equilibrium configurations of non-coaxial superlattice dislocation loops. 
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the dipole is stable, the lowest energy equilibrium 
during such elongation corresponds to a saddle 
point on the total energy surface involving the 
energy minimum in terms of R2, R3 and R4 and 
maximum in terms of R~. During passing, how- 
ever, the dipole configuration becomes unstable 
and the equilibrium configuration during such 
passing is found to correspond to a minimum in 
terms of  Rt ,  R3 and R 4 and a maximum in terms 
of R2. Determination of these complex saddle 
points, however, involves many steps and they 
have been illustrated earlier [18] with reference to 
hexagonal loops. The configurations represented 
in Fig. 4, correspond to these saddle point con- 
figurations determined for each decrease in stress. 
After determining the equilibrium configuration 
for a given stress, the configuration is tested for 
cross-slip by all of  the four modes discussed 
earlier. This test again involves the determination 
of  the changes in the saddle point configurations 
as the cross-slip distance d is increased from zero 
as discussed in the previous section. 

The results for Y =  300 x 10-Scm and Z =  
50 x 10 -a show that cross-slip of the loops does 
not occur until R1 is increased to 950 x 10-Scm. 
When Z is increased to 65 x 10-Scm, the loops 
follow essentially the same path as before, except 
that the loops elongate to a larger distance before 
they cross-slip. Since Z is larger, the cross-slip 
forces between the loops are reduced and the only 
way to increase these forces is to generate longer 
dipoles. The cross-slip in both cases is found to 
occur by mode b (Fig. 2b). 

When Z is further increased to 80 x 10-Scm, 
the dipole, however, is no longer stable and passing 
becomes a competitive process with respect to 
elongation and to cross-slip. Fig. 4 shows that for 
this value of Z, the loops start to pass one another 
after their some initial elongation. This passing is 
accompanied by the bending of the R~-~  curve 
towards the single loop curve, and ultimately when 
the loops pass one another, the two curves con- 
verge to one and this aspect can be seen more 
clearly for Z = 100 x 10-acre. That is, the loops 
behave essentially as independent loops after they 
pass one another. With an increase of  Z to infinity, 
the equilibrium configurations of  the loops should 
follow the solid curve for all stresses since the 
loops are independent of each other. On the other 
hand, when Z is decreased from 50 x 10-Scm to 
40 x 10-Scm, cross-slip of  the loops occurs at a 
smaller R1 value and in fact cross-slip occurs 

immediately after the loops meet one another as 
shown in Fig. 4. At these smaller values of  Z, 
cross-slip is found to occur by mode a (Fig. 2a) 
that is for these Z values, cross-slip occurs as soon 
as the outer loops meet one another. 

It is next of  importance to consider the effect 
of  Y on the behaviour of  the loops. When Y is 
decreased to 270 x 10-Scm and with Z remaining 
the same as 50 x 10-8cm, the results show that 
the loops have to elongate to larger value of  Rt 
before they cross-slip. Since a decreasing Y reduces 
R2 and R4, the loops have to overcome larger 
line tensions before they can cross-slip. Another 
effect of the decrease of Y is to shift the RI-~- 
curve to higher stress. This is again related to the 
fact that due to the smaller radius, the loops have 
to expend more energy to elongate along the R1 
direction. Except for the above differences, the 
results for Y =  270 x 10-Scm are found to be 
similar to those for Y =  300 x 10-Scm. 

The present calculations also showed that it 
is difficult to decrease Y any smaller than Y =  
270 x 10-Scm since for Yless than 270 x 10-Scm, 
superlattice dislocation loops become unstable due 
to the collapse of  the inner loops. Hence, for Y 
less than 270x  10-Scm the dislocation loops 
meet as outer loops as shown in Fig. 5. The 
behaviour of  these loops is similar to that of  the 
unextended dislocation loops determined earlier 
[19] except that the APB energy in the present 
case acts somewhat similar to a frictional force. 
Thus depending on the value of Z, the loops 
either elongate along the R1 direction, or cross- 
slip and annihilate their screw segments, or else 
pass one another if Z is sufficiently large. When 
they cross-slip or elongate along the R~ direction, 

Y 

2 
///////M/I/I/@ 

@// / / I /H / I / I /  
8 

Figure 5 Collapse of the inner dislocation loops occurs 
when Y is small leaving the outer loops alone thereby 
generating disorder. 
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Figure 6 Variation of X 0 and X~ with the applied stress 
for the constrained non-coaxial dislocation loops. 

the loops generate disorder inside the crystal as 
discussed previously [19], 

For a further understanding of the passing 
behaviour of the dislocation loops discussed with 
reference to Y =  300 x 10-8cm (Fig. 4), Xo and 
X~ given by Equations 1 and 2 are represented as 
a function of the applied stress in Fig. 6. For 
Z = 50 x 10-acre, Xo increases from some nega- 
tive value while X~ remains essentially constant. 
Cross-slip occurs by mode b, when Xo is very 
nearly equal to Xt.  For this configuration, the 
inner loops are closer to one another and, there- 
fore, experience maximum cross-slip forces. Since 
during this decrease in stress, R~ has also increased 
to a sufficient magnitude to force the cross-slip 
by mode b. 

On the other hand, when Z =  65 x 10-8cm, 
Xo increases and reaches a maximum before it 
decreases. The decrease of  Xo means that the 
loops that are about to pass are snapped back to 
reform the dipole. This snapping is again related 
to the way the screw segments elongate during 
passing. When the loops are small, the passing 
stresses are also small since the internal stresses 
holding the dipole together are small. However, 
as the dipoles are about to break apart, the screw 
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segments meanwhile increase their lengths thereby 
increasing their attraction forces which cause the 
loops to snap back to reform the dipole. During 
the snapping processes, however, cross-slip forces 
also increase proportionately leading to cross-slip 
and mutual annihilation of the screw segments. 

When Z is increased to 80 x lO-8cm, Xo in- 
creases continuously while X1 stays nearly con- 
stant. From Fig. lb and c, such an increase of  Xo 
without a corresponding increase in XI corres- 
ponds to complete passing of the loops rather than 
to uncoupling. Since Z is larger than that con- 
sidered above, the internal stresses between the 
loops are not sufficient either to hold the dipole 
or to snap back to reform the dipole that is being 
decomposed. The same results are obtained for 
Y = 270 x 10-8cm. 

The present investigation was originally motiv- 
ated by the argument that since cross-slip of  the 
dislocation loops is difficult, smaller separations 
between the passing dislocation loops could be 
obtained which could induce uncoupling of the 
dislocation loops and thus provide a mechanism 
for the generation of disorder in the crystal. 
The results obtained, however, indicate that the 
behaviour of  the dislocation loops is somewhat 
similar to that of  infinite dislocations. That is, 
if Z is amall, the dislocation cross-slip and annihi- 
late their screw segments, and if Z is large, dis- 
locations pass completely without any uncoupling. 
Although, cross-slip is relatively difficult for the 
loops, because of their flexibility to elongate 
preferentially along their screw orientation, cross- 
slip becomes an easier process compared to say 
uncoupling. Indeed, the presence of such elong- 
ated loops is a common feature in many ordered 
alloys [ 2 - 4 ] .  While it is interesting to find out 
that the cross-slip as well as passing behaviour of  
dislocation loops closely follow that of  infinite 
dislocations, the question still remains concerning 
the mechanism for the generation of disorder in 
ordered alloys. 

It could be argued that the present analysis has 
considered only the effects of  long range line 
tension on the cross-slip behaviour of  loops. 
Superimposed over these effects, however, there 
could be additional short range line tension effects 
that would make the cross-slip process more 
difficult in comparison to passing and uncoupling. 
Furthermore, consideration of anisotropic fric- 
tional forces should make cross-slip even more 
difficult to accomplish. A detailed analysis of  



these aspects is required before further can be 

said about the mechanism of  generation o f  dis- 
order in single crystalline ordered alloys that  are 

oriented for single slip. 

5. Summary and conclusions 
The behaviour o f  constrained non-coaxial super- 
latt ice dislocations loops has been determined by  
approximating the loops by  piecewise segments. 
The purpose o f  the investigation was to determine 
whether or not  the loops could uncouple during 
their passing thus generating disorder within the 
crystal. The results indicate that the loops either 
pass one another completely without  any un- 
coupling or else elongate preferentially along 
their screw orientat ion until  the internal stresses 
are sufficient for the loops to cross slip and 

mutually annihilate their unlike screw segments. 
Thus, the behaviour o f  the loops are found to be 
somewhat similar to infinite superlattice dis- 
locations wherein cross slip or passing occurs in 
preference to uncoupling. It is suggested that  
addit ional analysis is required before more can be 
said concerning the mechanism of  generation of  
disorder in single crystalline ordered alloys orien- 

ted for single slip. 
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